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ABSTRACT

The Japanese braids known as Naiki, which are distinguished by their hollow interior,
have a simple structure shared by many other fiber arts and crafts. The way in which
this structure forms a cylindrical braid imposes a particular set of symmetries on
the final product. This paper uses enumerative combinatorics, including de Bruijn’s
Monster Theorem, to count the number of two-color Naiki braids under equivalence
by this natural set of symmetries.
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1. Introduction

Kumihimo, the Japanese word for braid, is used in Western countries to describe a
collection of styles of Japanese braiding, usually using relatively simple looms to braid
between 4 and 36 strands or bunches of fiber. This paper focuses on Naiki, a traditional
braid usually made with 16 strands which has a hollow interior which can either be
filled with a core or squeezed flat. Some examples are shown in Figure 1.

The same braid with 8 strands is known as Edo Yatsu; Edo from the former name
for Tokyo and Yatsu meaning eight (Combs, 2016, p. 15). It seems likely that Edo
Yatsu is older than Naiki, but probably not as old as some other kumihimo braids.
The earliest Japanese braids seem to have been made using a fingerloop braiding
technique (Tada, 1999, p. 10-11), which does not lend itself well to cylindrical braids.
Most cylindrical braids seem to have developed after the invention of the marudai,
a traditional stand, which probably occurred during the Muromachi period (1333—
1573 CE) (Tada, 1999, p. 14). It seems likely Edo Yatsu was also developed during
this period, as the city of Edo was founded in the 12th century CE and served as an
important fortified city starting in the 15th century CE. Early in this period, kumihimo
braids were used for tying together pieces of the traditional samurai armor. By the
end of the period, they were being used in fashion and decoration by ordinary people
as well as aristocrats and samurai (Tada, 1999, p. 14-15; Cassan, 2022).

Neither the origin of Naiki nor the meaning of its name is clear; according to Rebecca
Combs (2016, p. 73) it is probably named after the Naikidai, a braiding machine from
the Edo period (1603-1868 CE) in Japan. In this machine, 16 weighted threads are



hung around a cylinder. Sliding a wooden handle back and forth moves a set wooden
pieces with metal hooks. These hooks grab selected threads and lift them over other
threads. (Pictures and a video can be found at Cassan (2022).) It is not known how
the Naikidai got its name. Instructions for making the braid on a marudai may be
found in Tada (1999, p. 87); we will be focusing on the final result.

Figure 1. Examples of Naiki braids. Braiding and photography by Rosalie Neilson.

The structure of Naiki is a simple over-and-under interlacement, as shown in Fig-
ure 2a. This structure also appears in several other contexts. It is listed in the Ashley
Book of Knots (1944, p. 498) as #3021 “Round Sinnet”. It is the same structure as
that of plain weave, with the bias oriented along the axis of the braid. It is also the
same as the structure produced by the maypole dance known as Grand Chain (Tian,
2019). The numbering in the figure corresponds to the numbering of the strands as
they are placed around the disk, as shown in the row of numbers above the braid. Odd-
numbered threads become oriented in the lower right to upper left direction within the
braid, like a “backslash” or the diagonal stroke of the letter S. Even-numbered threads
become oriented in the lower left to upper right direction, like a “forward slash” or
the diagonal stroke of the letter Z. We will follow terminology often used by spinners
and weavers and call the first direction S and the second direction Z. The long red
and yellow stripes in Figure 1, for instance, are in the Z direction.

In Figure 2b, we abstract the structure into a grid. Each square of the grid in the
figure corresponds to a crossing of an odd-numbered thread with an even-numbered
thread, with the odd and even threads visible in alternate squares.

This paper will focus on the situation with 16 strands, each having one of two
colors. We will refer to the “spots” of the pattern as being the grid squares showing
the color used in fewer strands. The number of spots will be counted in the 8-by-8
fundamental region shown in Figure 2b, and will (in the 16-strand case) be four times
the corresponding number of strands. For example, Figures 3¢ and 3d on page 4 each
have 16 spots, which are blue. If there are equal numbers of strands of each color, such
as in Figures 3a and 3b, we will refer to 32 spots without identifying which color they
correspond to.
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Figure 2. (a) The structure of Naiki. Strands going off one side are assumed to wrap around to the other.
(b) An abstracted version of the structure, with a fundamental region marked.

In 2011, Rosalie Neilson published The Twenty-Four Interlacements of Edo Yatsu
Gumi (Neilson, 2011). This book gave a complete inventory of the Edo Yatsu braids
with 8 strands, each of one of two colors, up to equivalence of color pattern under
rotations and translations. That work was done by exhaustive search; the goal of this
paper is to do a similar inventory of 16-strand Naiki patterns, but guided by theorems
in enumerative combinatorics. Similar work was done by the author for the Kongo
Gumi kumihimo technique (Holden, 2022a).

2. The Group of Permutations

In the author’s previous work on Kongo Gumi kumihimo (Holden, 2022a), the group of
permutations of threads which left the pattern invariant was just the dihedral group.
In the case of Naiki braids, the group is more complicated due to the independence of
the two sets of threads and the lack of inherent chirality in the braid.

The group of symmetries of a Naiki braid, like that of the Kongo Gumi braid,
is a three-dimensional line group, which can be thought of as a wallpaper group
wrapped around a cylinder. We will consider the braid to be divided into grid squares
as above. Recall that the grid squares alternate between threads with an S-orientation
and threads with a Z-orientation in a checkerboard pattern. A priori, we need to de-
cide whether or not we will consider two braids to be equivalent if their color patterns
are equivalent, even if the thread orientations are not equivalent under the same sym-
metry. However, we will show that with a single exception, this distinction does not
occur.

A symmetry of Naiki either keeps all or swaps all of the thread orientations. Suppose
a symmetry fixes the color pattern of a braid but swaps the thread orientation. Without
loss of generality, we can assume thread 1 has color A and crosses over threads 2, 6,
10, 14, as in Figure 2a. If another pattern has the same colors but opposite thread



orientation, then threads 2, 6, 10, 14 must have color A. Similarly, thread 3 crosses
over threads 4, 8, 12, 16 in the first pattern, so those threads must have the same color
in the second pattern, and likewise with thread 2 crossing over threads 3, 7, 11, 15
and thread 4 crossing over threads 1, 5, 9, 13.

Now there are four possibilities. If all four groups of threads are the same color,
then every symmetry fixes the pattern. If the even threads are one color and the odd
threads are another color, you get a checked pattern (as shown in Figure 2a). Every
symmetry fixes this pattern up to a color reversal, regardless of how you consider the
thread orientations. If the even threads and the odd threads both alternate colors,
then you get stripes, as in Figures 3a and 3b. Every symmetry fixes these patterns up
to a color reversal and/or glide plane reflection.
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Figure 3. (a) A stripe pattern in the S direction. (b) A stripe pattern in the Z direction. (c) Regularly spaced
spots in the S direction. (d) Regularly spaced spots in the Z direction.

Finally, there is the interesting case, where three of the four groups of threads are
the same color and the fourth is different. In this case, you get a regularly spaced
grid of spots, all of which have the same thread orientation. This thread orientation
could be in either direction, as shown in Figures 3c and 3d, so this is the only case
where two patterns are equivalent under color symmetry but not thread orientation
symmetry. It will prove to be convenient to consider only symmetries which preserve
thread orientation, and therefore to count these two patterns as distinct but equivalent
under a glide plane reflection. (Note that the same proof shows that if any symmetries
reverse the chirality of a pattern, the set of such symmetries is exactly the set of
symmetries that swap the even and odd sets of threads.)

If every strand is the same color, the symmetries which preserve thread orienta-
tion are now generated by the 8 rotations around the axis, the 8 distinct translations
along the axis, a 180° rotation around a line perpendicular to the axis, and a glide
plane reflection, parallel to the axis. (P42c¢ in Hermann-Mauguin crystallographic no-
tation (Radaelli, 2011, Secs. 8.1 and 10.2).)

Let’s consider what each of these symmetries does to the set of threads for n = 16.
The rotations rotate the braid by a multiple of two threads around its axis, so that
even-numbered threads stay even-numbered and odd-numbered threads stay odd-
numbered, as shown in Figure 4a. These rotations are generated by the permu-
tation (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16). A minimal translation followed
by a rotation by 2 threads, as shown in Figure 4b, gives a helical transformation
which has the effect of leaving the odd threads unchanged and permuting the even
threads (2,6,10,14)(4,8,12,16). The rotation perpendicular to the axis, shown in
Figure 5a, reverses the order of both sets of threads, thus giving the permutation
(1,15)(3,13)(5,11)(7,9)(2,16)(4,14)(6, 12)(8, 10). And the glide plane reflection swaps



the even and odd threads and also translates, as shown in Figure 5b, with permutation
(1,14,3,12,5,10,7,8,9,6,11,4,13,2,15,16). These permutations generate a permuta-
tion group on 16 symbols with 128 elements.
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3. Cycle Indices

Our aim is now to count Naiki patterns up to the equivalences above and also up to
changing the colors. The theorems that we will use come from the same ideas as the
Orbit-Counting Theorem® and the Redfield-Pélya Enumeration Theorem. (See Brualdi
(2009, Chap. 14) for an elementary introduction to these theorems, which are often
taught towards the end of undergraduate combinatorics courses.) These theorems work
by relating the number of objects fixed by certain symmetries to the number of sym-
metries fixing certain objects. This latter information can be kept track of using a
multivariable generating function called the cycle index (Brualdi, 2009, Sec. 14.3).

Definition 3.1. If G is a permutation group on m symbols, then the cycle index of
G is the generating function

P(z1,...,2m) = ’(1;| Z ﬁ xik(g)

geG k=1
where ji(g) is the number of cycles of g with length k.

For example, the cycle index of G = {(1)(2), (12)} is % (2} + 22), signifying two
cycles of length 1 and one cycle of length 2. More examples can be found in Sup-
plement 1 of Holden (2022a). General formulas for the cycle indices of many types
of permutation groups are known, and also some formulas for combining indices for
smaller groups into indices for larger ones. For the symmetry groups we will consider
in this paper, however, brute force seems to be the best method. Built-in commands
for this calculation are provided in many computer algebra systems; Maple was used
for the particular calculations in this paper.

4. A Version of de Bruijn’s Theorem

We will start by using the version of de Bruijn’s Theorem from Holden (2022a) to
count the number of Naiki patterns with a given number of threads of each color, up
to the equivalences above and also up to changing the colors. We start by introducing
the following notation: let 7s be the power series expansion in x of

> 1
eS(Frt et ) = 1 4 ooy p 4 (2822’3 + 3225> 24 ...
with z¢ replaced by wy; for each £

1
Ns = 1+ szswi + <252z§ + 82’25> wy + ...

The monomial w; will be used to track when s threads have color /.
Then the theorem can be stated as:

Theorem 4.1 (de Bruijn (1959, Special case of Thm. 1)). If an object has m locations
which can each be colored with one of q different colors, and a group G of symmetries

ITraditionally called Burnside’s Lemma but not due to Burnside, see Neumann (1979) for more.



Table 1. Inventory of patterns given by de Bruijn’s Theorem.

Spots: 0 4 8 12 16 20 24 28 32 Total
Patterns: 1 1 5 11 30 52 95 120 91 406

with cycle index Pp,(x1,...,%m), then the number of non-equivalent ways to color the
object with the first color in my locations, the second color in mo locations, and so on,
is the coefficient of wi"™ w3 ... in

0 0
(L. .. L
(821 8Zm> Sq (771 7761)

where Sq(z1,--- ,x4) is the cycle index of all ways to permute q colors, the whole
expression evaluated at z1 = 29 = -+ = 2z, = 0.

Let G be the group of symmetries described above. Maple commands were used to
compute the elements from the generators and then the cycle index from the elements.
This gave us the cycle index of G:

Pig(x1,...,216) = %x%6+é$§mg+%m§:ﬂi+%m%x%+%azg+;—2x%mi+%xﬁ+é:ﬂ§+%fclg.
With ¢ = 2 colors, the cycle index S is
So(x1,w2) = % (x% + :UQ)
as described in Section 3. Then
Pig <88zl’ s 8516) Sa (11, 1m2)

_Lalﬁs%ri 9128, +i 0108s, +; o108, +£8852
128 02116 6402920218 3202420218 802980214 128 9298

1 955, 1 9%Sy 10%S, 105,
t a5 g T A + 2 + 5
32 82428Z24 32 8,244 8 8282 2 87:16

which evaluated at z; = 20 = -+ = 215 = 0 gives
wowig +wiwis + dwowig + 11wawis + 30wawi2 + H2wswi1 + 9dwgwig + 120w7wg + 91w§

Thus there are a total of 406 patterns using one or two colors, with colors distributed
as in Table 1. Of these, 404 have mirror images which are not otherwise equivalent.



5. The Monster Theorem

At this point it seems logical to further break down the classification according to how
many even-numbered threads were of each color and how many odd-numbered threads
had each color. Suppose we have a permutation group H acting on a set of colors. For
each color ¢ we arbitrarily choose an index r; subject to the constraint that r, = ry
if there is an h in H such that h takes ¢ to ¢'. (In our application, H will be the full
symmetry group, and thus all of the r, will be equal.) Similarly to Theorem 4.1, we
let n,; ;0 be the power series expansion in x of

2 1
eS(Fert et ) = 1 4 ooy p 4 <2S2Z§ + 3225> 2+ ...

with x' replaced by wy,, ; for each t:

R s 1 2,2 s
775727]76 - 1 + Ssz’i,T@,l + 28 ZS + 8Z25 wl‘fl’[,? + R
The variable w; ,, ; will be used to track when t threads with parity ¢ have color /.
Looking for further generalizations of de Bruijn’s Theorem, we then find:

Theorem 5.1 (de Bruijn’s Monster Theorem (1971, Thm. 8.2, somewhat simplified)).
Suppose an object has m locations partitioned into k sets D1, ..., Dy, and each location
can each be colored with one of q different colors, with two colorings being considered
equivalent if they are related by a permutation h in a group H acting on q symbols,
and the locations have a group G of symmetries such that g takes D; to itself for all

i. Let DZ%), j = 1,...,J, be the orbits of the action of g restricted to D;, and let

RSZ), £=1,...,L, be the orbits of the action of h on the colors. Then the number of
non-equivalent ways to color the object with the first color in my; locations of D;, the
second color in mo; locations of D;, and so on, is the coefficient of

Wirymay " Whryma o Wlre,may * " Whirama e * " Wlrgmgr * " Whyrg,mg s

m
k J P L
-1 —1
et S ST T ) (T
geG heH i=1 \j=1 Dy /=1
the whole expression evaluated at z1 = z0 = -+ = 2, = 0.

(In an abuse of notation, we are using ¢ in the theorem to represent both a color
and an orbit of colors. Since two colors in the same orbit must have the same ry, this
should be harmless.)

Applying the theorem with m = 16, k = 2, ¢ = 2, G as above, D; =
{1,3,5,7,9,11,13,15}, Dy = {2,4,6,8,10,12,14,16}, and H being all permutations
of 2 colors (and suppressing the values of r, which are all equal to 1), we get the



Table 2. Coefficients from (1)
of Wy qW1,8—qW2 pW2,8_p-

0 1 2
2 8

12

12 48

IS
W N = O

polynomial

2wy gw1 w2 0was + 2w pwi gwa 1wa 7 + 8wy pwi gwa 2wa ¢ + 10wy gwy gwa swas (1)
+ 8w170w178w§’4 + 2wy jwy 7we 0w2,8 + 4wy 1w rwo 1we 7 + 12w 1w 7w2 2w2 6
+ 20wy 1w1,7w23wa 5 + 13w 1w 7w3 4 + 8wy 2wi w2 0wa s + 12w 2w1 gwa 1w T
+ 48wy 2wy w2 2wa 6 + 68W12w1 gWa 3Wa 5 + 52w 2w gw5 4 + 10wy 3w 5w gWag
+ 20w 3w1 swe 1wa7 + 68w 3w 5w 2w2 6 + 116w 3w sw2 3wa 5 + 79101,3101,5“1%,4

2 2 2 2 2 2
+ 8wy qwapweg + 13w qwa1w2 7 + 2w 4w2 2w26 + 79w1’4w2’3w275 + 96wi 4w3 4.

For ease of reference, we represent this in tabular fashion as Table 2.

This is obviously a very powerful theorem. It does have a few limitations for our pur-
poses, however. First, note that we would like D; to be the odd threads and D5 to be
the even threads, but the theorem does not cover the permutations which swap these
sets of threads. We have determined that these symmetries only preserve the single
pattern with 0 spots and the single pattern with 32 spots, so we will treat these as spe-
cial cases, colored in red in Table 2. In the cases corresponding to w1y (w1 8—qW2,,W2,8—q
for a = 1,2, 3,4, swapping even with odd threads gives the same or opposite color dis-
tributions. Therefore, by failing to account for that swap we are double-counting those
patterns. We take that into account by dividing by 2 the coefficients shown in blue
in Table 2. In every other case, swapping even with odd threads merely shows that
the coefficient of w1 w1 g—qwapwag—p must be equal to that of wy pwi s_pw2 qw28—q,
which can be confirmed in Table 2. The two coefficients represent the same equivalence
class in these cases.

The other limitation comes from the fact that colors in the same orbit of H must
have the same variables in the generating function. Therefore, it will not be possible
to separate the set of patterns with a odd threads of color A, b odd threads of color
B, ¢ even threads of color A, and d even threads of color B, from the set with a odd
threads of color A, b odd threads of color B, d even threads of color A, and ¢ even
threads of color B, as both will correspond to the monomial w1 1,,w11pw2,1,cW2 1,4



Table 3. Inventory of patterns given by the Mon-
ster Theorem.

even thread spots

0 4 8 12 16

0 1

4 1 1

8 4 6 12
odd 12 5 10 34 29
spots 20 5 10 34 29

24 4 6 12

28 1 1

32 1

(Indeed, it is difficult to see how any generating function could make this distinction
while allowing colors to be exchanged.)

Again, a close look at the particular situation will rescue us. If a = b or ¢ = d,
then the two sets of patterns above coincide up to exchange of colors. The coefficient
of wy 1 qw1 1 pw2,1,cW2,1,4, adjusted as above if a = b = ¢ = d, will give us the correct
count. If @ # b and ¢ # d, it is not possible for a member of one set of patterns
to be equivalent to a member of the other. Also, there is an equivalence-respecting
bijection between the sets induced by exchanging the colors of either the even or odd
threads, but not both. (Since exchanging colors on both thread parities gives a pattern
equivalent to the original, it does not matter which side we exchange.) Therefore the
coefficient of w11 qw1 1 pwo,1 W2 1,4 represents the sum of two different but equal-sized
equivalence classes of patterns, one with a > b and ¢ < d and the other with a > b and
¢ > d. These are the coefficients which are unbozed in Table 2. Arbitrarily choosing
representatives such that there are at least as many spots from the odd threads as
from the even, we arrive at Table 3, which uses the same color-coding as Table 2.

With the help of a computer, we can generate diagrams for the complete set of
patterns corresponding to each element of the table. These diagrams are available
on GitHub (Holden, 2022b), along with some notes on how they were systematically
generated.

6. Future Work

As previously noted, the traditional Edo Yatsu braid has the same structure as Naiki,
but with 8 strands. Naiki braid kits with 20 strands are available on the Inter-
net (Huntoon, 2023). The author is not aware of other numbers of strands documented
in the context of kumihimo, but Ashley (1944, p. 498) notes that the structure will
work with any even number. With n strands, the symmetries which preserve thread
orientation are generated by the n/2 rotations around the axis, the n/2 distinct trans-
lations along the axis, a 180° rotation around a line perpendicular to the axis, and a
glide plane reflection, parallel to the axis. (P(n/2)2c in Hermann-Mauguin crystallo-
graphic notation.)

As a check on the work, the analyses of Sections 4 and 5 were done with 8 strands
as well as 16. These analyses should go through without difficulty for any even number
of strands, simply with longer computations. (As far as the author knows, there are
no closed form formulas for the generating function coefficients needed, so a general
analysis is probably not possible.)

We could also consider more than 2 colors. The author has not been able to find
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any historical examples, but Tada (1999) gives modern examples of and patterns for
braids with three and with five colors. With more than two colors, the analysis of
Section 4 should again go through without difficulty, using longer computations. The
Monster Theorem of course also still applies, but the separation described in Section 5
of different color patterns with the same monomial will be more complicated. In any
given case this seems doable, but it is not clear whether there is a general algorithm. De
Bruijn’s own examples for the Monster Theorem contain instances where the “colors”
refer to patterns in sets of locations rather than a single color in a single location, but
it is not clear how to apply that here.

Since the structure of Naiki is the same as that of plain weave, it seems reasonable to
ask if we can classify plain weave patterns using the same techniques. The symmetries
that produce equivalent patterns are not the same, however, since the fabric is not
usually oriented on the bias and there may be no distinguished axis. In particular,
it is not clear how to deal with the symmetry that rotates the fabric 90°. Like the
glide plane reflection, this rotation swaps the odd and even threads. However, there
are many more possible patterns fixed by the rotation that would need to be dealt
with as special cases. Possibly there is a further extension of the Monster Theorem
that can deal with the situation where elements of G are allowed to permute the D;
as well as preserving them.
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